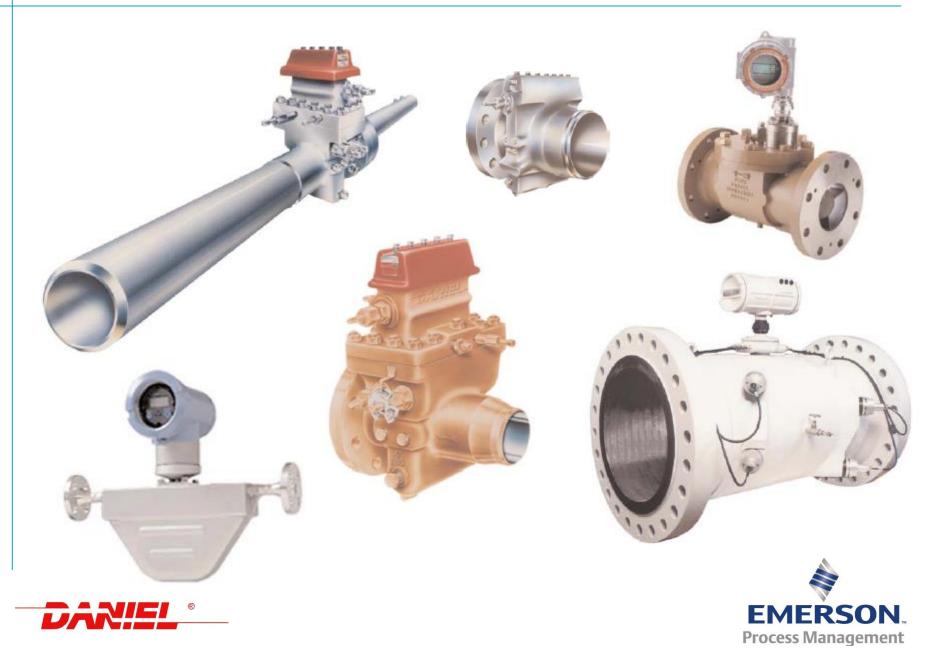


Gas Measurement Techniques

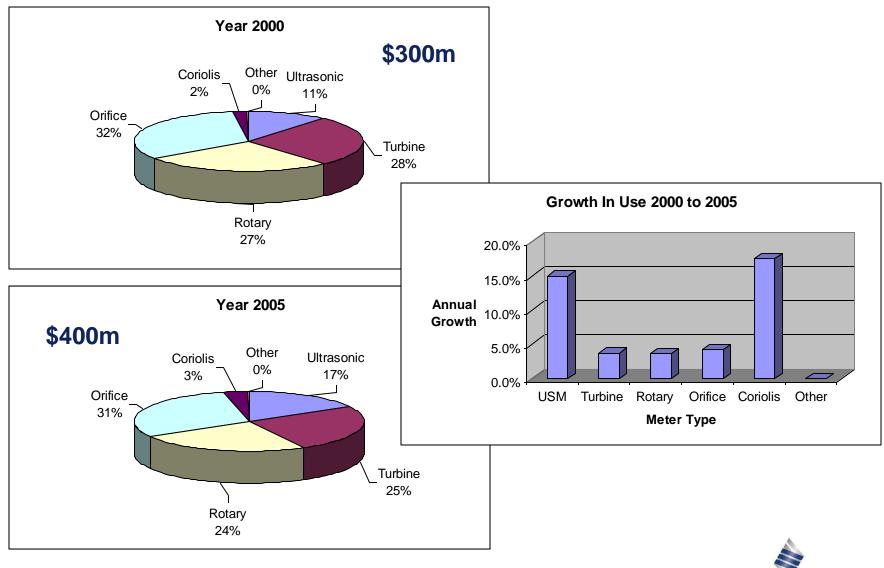
Tom Mooney Business Development Manager Gas Products Europe, Middle East & Africa

Algeria – April 2002

Process Management


Agenda

- Introduction
- Overview of Three Metering Technologies
 - Review of Basic Operating Principles
 - Advantages and Disadvantages of Each Technology
- Selecting The Correct Meter Based Upon
 - Fluid type and process properties
 - Required metering performance
 - Installation requirements
 - Economic considerations
- > Questions & Discussion

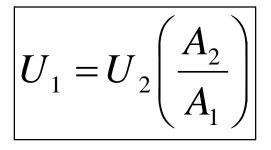


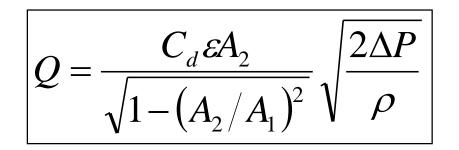
Introduction

Utilisation Of Different Gas Meters

Background

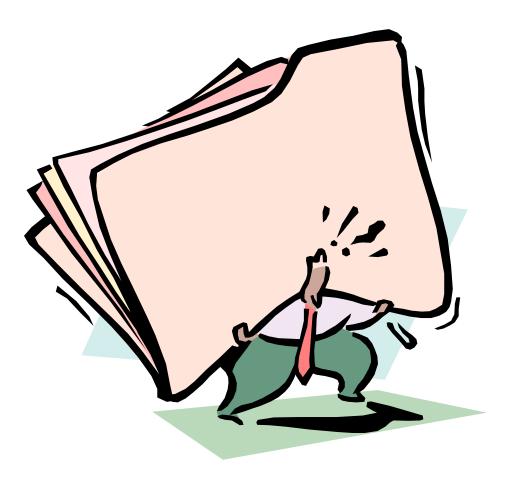
- Orifice Meters Are Differential Pressure Devices
 - Differential Pressure Is Related To Flowrate
- Have Been Used In Gas Measurement For 70+ Years
 - Fully Accepted & Standardised
- → Accuracy Relies On Correct
 - Application
 - Location
 - Flow Conditioning
 - Meter Tube Design
 - Operation





Operating Principle - Orifice Plate

$$p_1 + \frac{1}{2}\rho_1 U_1^2 + \rho_1 g z_1 = p_2 + \frac{1}{2}\rho_2 U_2^2 + \rho_2 g z_2$$
 Bernoulli Equation


Orifice Flow Equation

International Standards

- → ISO 5167
- \rightarrow AGA-3

Advantages & Disadvantages For Orifice Plates

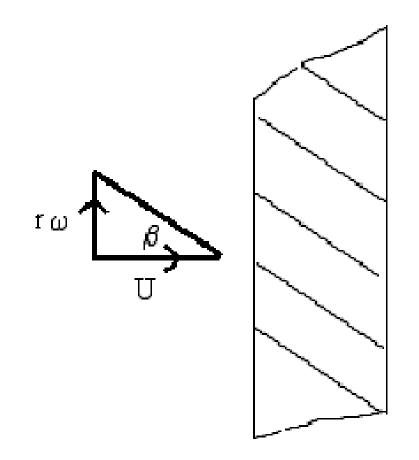
Advatages	Disadvantages
Well Documented In Standards	Low Rangeability
Industry Acceptance	High Pressure Loss
Low Capital Cost	Flow Profile Sensitive
No Moving Parts	Not Self Cleaning
Dry Calibration Acceptable	Frequent Recalibration of DP Cells
No Operation Limits (P&T)	Can Be Damaged By Excessive Flowrates
Mechanically Robust	

Application Of Orifice Meters

- Production
- → Gas Reception
- Transmission
- → Industrial Gas Consumers

Typical Daniel Senior Orifice Application

TURBINE METERING


- → First Patented In 1886
- → By 1950s Established In Jet Engine Industry
- → By 1970s Established In Petroleum Industry
- By 1980s Established In Natural Gas Industry Especially Continental Europe

Operating Principle - Turbine Meter

- 1. Mean Stream Velocity Is Proportional To Rotational Velocity
- 2. Volumetric Flowrate Is Proportional To Mean Stream Velocity

 $\tan \beta$ ω

International Standards

- ISO 9951: Measurement of gas flow in closed conduits – Turbine Meters
- → AGA7: Measurement of gas by Turbine Meters

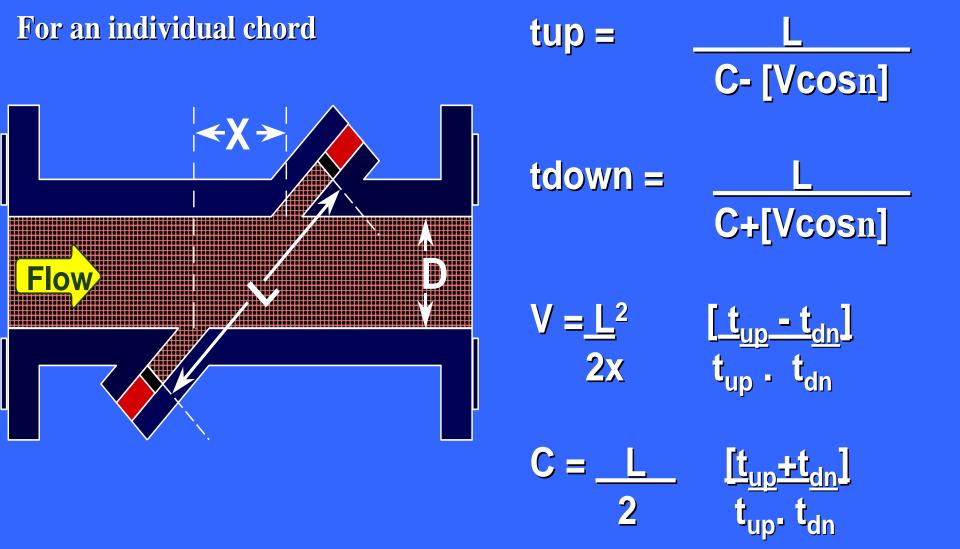
Advantages & Disadvantages for Turbine Meters

Advatages	Disadvantages
Accurate Over Linear Flow Range	Requires Flow Calibration
Industry Acceptance	Relatively High Pressure Loss
Medium Capital Cost	Moving Parts Require Maintenance
Medium Rangeability At High Pressure	Cannot Tolerate Dirty or Wet Gas
Electronic Output Available	Requires Swirl Free Flow
Natuyral Flow Totaliser	Can Be Damaged By Excessive Flowrates

Application Of Turbine Meters

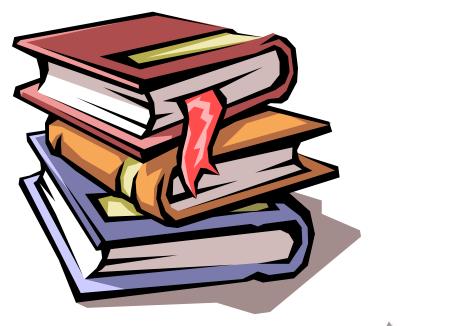
- → Gas Reception
- → Transmission
- Industrial Gas Consumers
- → Distribution

Typical Daniel Turbine Application



Background

- Acoustic techniques for flow measurement first proposed in 1935
- → First practical working meter produced in 1948
- Reliable meters since advancement of electronics in the mid 1960's
- British Gas developed multipath gas meter until mid 1980s
- Daniel Industries awarded license in 1985 and continued development
- Other Manufacturers Realise Benefits Of USM & Begin Development



Transit Time Technique - Basic Equations

International Standards

- → AGA 9
- → BS 7965:2000
- → ISO/TC 30/SC 5/WG1 (Draft Form)

Advantages & Disadvantages For Ultrasonic Meter

Advatages	Disadvantages
No Flow Calibration Required High Accuracy Large Rangeability No Additional Pressure Drop No Moving Parts Low Operation Cost Low Project CAPEX	Not Fully Accepted By Industry No ISO Standard Control Valve Noise

Application of Ultrasonic Meters

- Production
- → Gas Reception
- Transmission
- Distribution
- Industrial Gas Consumers
- → Domestic

Typical Application of The Daniel SeniorSonic

SELECTING THE CORRECT METER

FLUID & PROCESS PROPERTIES

Fluid & Process

	Pressure	Tempe	rature	Gas or Liquid	Bi-phase
		Min	Max		
Orifice	700 bar	Minus 20 C	250 C	G,L	Limited
Turbine	400 bar	Minus 20 C	100 C	G,L	No
Ultrasonic	700 bar	Minus 20 C	100 C	G,L	Limited

METERING PERFORMANCE

Metering Performance

	Accuracy	Repeatability	Linearity	Turndown		Pressure Drop
				Normal	Extended	
Orifice	1.00%	(-)	(-)	3 to 1	12 to 1	500mbar
Turbine	0.70%	0.20%	0.50%	10 to 1	30 to 1	300mbar
Ultrasonic	0.50%	0.10%	0.10%	30 to 1	100 to 1	NIL

INSTALLATION REQUIREMENTS

Installation Requirements

	Uni or Bi	Upstream	Downstream	Filtration	Sizes Available
	Directional	Requirements	Requirements		
Orifice	Uni	42D	7D	Advisable	To 50"
Turbine	Uni	20D	5D	Yes	To 24"
Ultrasonic	Bi	10D	3D	No	To 48"

COST CONSIDERATIONS

Cost Considerations

	Unit Price	Installation Price	Calibration Cost	Operational Cost	Maintenance Cost
Orifice	Low	High	Low	Moderate	Moderate
Turbine	Med	High	High	Moderate	High
Ultrason	c High	Low	Low	Low	Low

Flowrate

1 900 000Nm³/hr

Accuracy

+/- 1.0% Std Vol

Pressure 80 bar

Temperature38 degC

Two Potential Solutions

1. Orifice System (ISO 5167)

2. SeniorSonic System (AGA 9)

System Components

COMPONENT	ORIFICE SYSTEM	ULTRASONIC SYSTEM
No of Streams	3 x 24" runs	1 x 24" 100% run
Isolation Valves	Six	Two
DP Cells	Three	None
Pressure Cells	Three	One
Temperature	Three	One

PARAMETER	ORIFICE SYSTEM	USM SYSTEM
Maximum Flow	1 900 000Nm3/hr	2 800 000Nm3/hr
Minimum Flow	1 260 00Nm3/hr	34 100Nm3/hr
Turndown	15:1	83:1
Accuracy	+/-1.0% Std Vol	+/-0.5% Std Vol

Installtion Requirements

ORIFICE SYSTEM ULTRASONIC SYSTEM

Upstream Length	42D	10D
Downstream Length	7D	3D
End to End Length	37m	11m
Width	5m	2m
Weight	37 tonnes	6 tonnes

Installation Costs (CAPEX)

The Relative Costs Are

- 1. Orifice System
- 2. Ultrasonic System
- 2.50 units1.00 units

Case Study

South Morecombe Metering Station

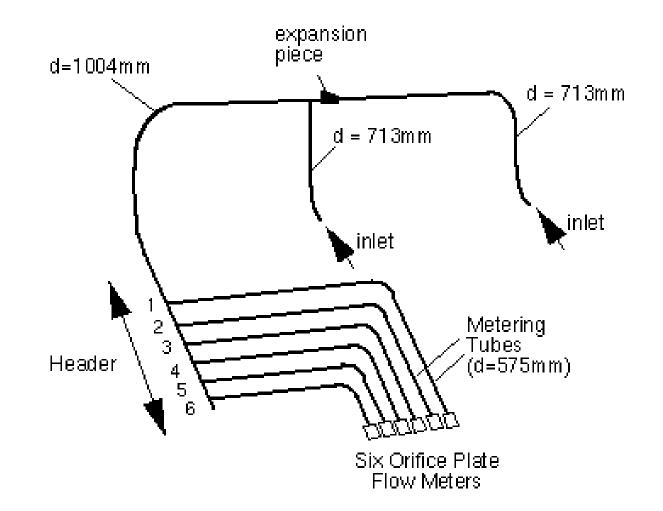
British Gas HRL , U.K

Recent Daniel Project

- Olient
- Originally Constructed
- Capacity
- → Metering

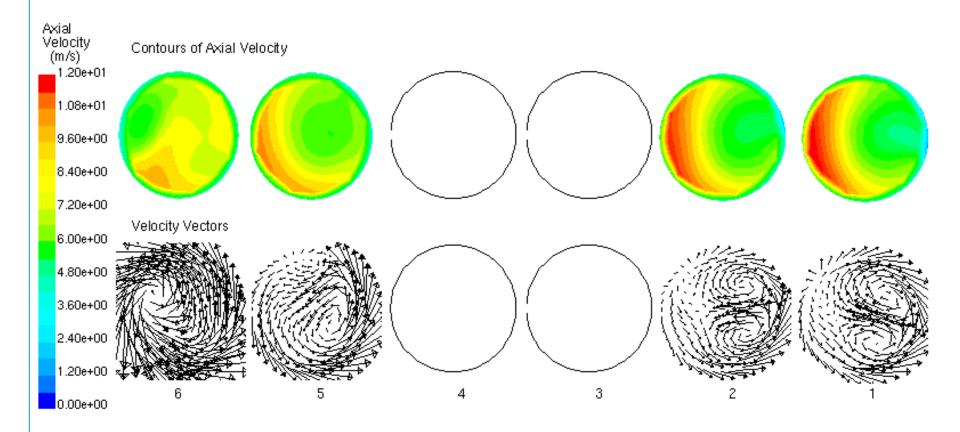
British Gas HRL

Constructed 1985


50 MMSCFD

6 x 24" Orifice Systems

Morecombe Bay Orifice System



Computational Fluid Dynamics Study Undertaken To See if Flow Profile is Fully Developed

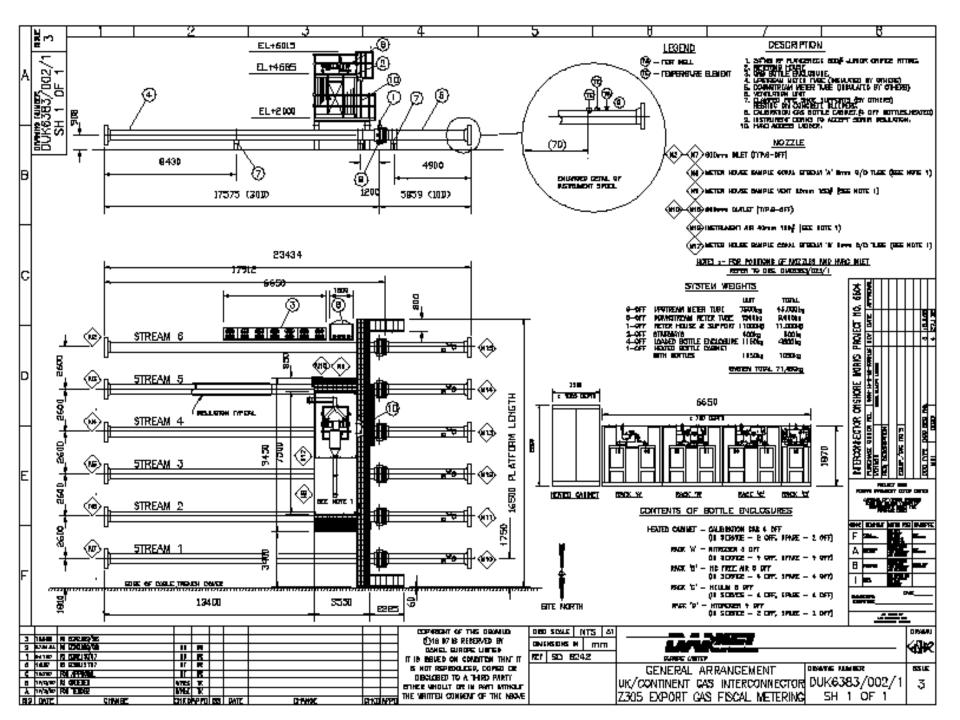
Results of CFD Study

Computational Fluid Dynamics Study

Revealed Flow Profile Not Fully Developed

Swirl Angle > 2 Deg

Vendor Selection Criteria


- > Price
- > Delivery
- Technical Acceptance

"...as the chosen meters were of the chordal design they didn't use a Reynolds number correction algorithm thus changes in the meters roughness were unlikely to affect its performance." - Extract From Published Paper

